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Intended learning outcomes

Geometric proprieties including SAR image interpretation and
slant-range distortions

What SAR Backscattering is

Types of backscattering mechanisms

SAR backscatter in forests and applications



Geometric proprieties: SAR image interpretation and slant-range
distortions

While the images created by SAR can be rendered into a
recognizable terrain map, there are important differences between
optical imagery and SAR imagery. SAR imagery is considered a non-
literal imagery type because it does not look like an optical image
which is generally intuitive to humans. These aspects must be
understood for accurate image interpretation to be performed.
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Slant Range Distortions

Slant Range
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Source: Erika Podest, Basics of SAR: ARSET Applied Remote Sensing Training



Geometric Distortion

Layover Foreshortening
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Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Foreshortening

Before Correction After Correction

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Shadow

Source: Natural Resources Canada

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Radiometric Distortion

* The user must correct for the influence of topography on backscatter

* This correction eliminates high values in areas of complex topography

Before Correction After Correction

vold

Image Credits: ASF

Source: Erika Podest, Basics of SAR: ARSET Applied Remote Sensing Training



Shadowing
Shadowing is caused for the same reasons that shadows are formed in optical imagery: an
object blocks the path of direct radiation — visible light in the case of optical imaging and
the radar beam in the case of SAR. However, unlike optical imagery in which objects in
shadows can be seen due to atmospheric scattering, there is no information in a SAR
shadow because there is no return signal

SHADOW
* Area behind mountain cannot
be seen by sensor
» Shadow effects increase with
increasing look angle
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Foreshortening

Because SAR is a side-looking, ranging instrument, the backscattered returns will be
arranged in the image based on how far the target is from the antenna along the slant
plane (radar-image plane). This causes some mterestlng geometrical distortions in the
imagery, such as foreshortening. Ry 71

FORESHORTENING

fﬂll y slope

* ‘shortening’ of slopes
facing the radar

SAR

Look Angle

e ‘stretching’ of slopes
oppositely oriented
to the radar

Radar Beam

- Radar-Image
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Figure 4. Foreshortening Geometry (Credit: NASA)




Layover

Layover is an extreme example of foreshortening where the object is so tall that the radar
signal reaches point B before it reaches point A. This causes the returns from point B to be
placed on the image closer to the sensor (near range) and obscure point A, as if the top

has been overlaid on the foot of the mountain.

&
.Y‘ o

Look Angle
Radar Beam

Radar-Image
Plane

Radar-Image

B'A\'F‘"Qat

/7
/I CI
s
e
I, \
7
,/
Near Range z Far Range

Figure 5. Layover Geometry (Credit: NASA)

LAYOVER
* Mountain top overlain on
ground ahead of mountain

* Layover effects decrease with

increasing look angle
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SAR distortions

. Layover
Forcshortening
Chapter 6 (psu.edu)
. The wavefront that are e(%ual in distance to the satellite
) Targets on the same arc (blue dashed line) will end up

& = "“I_,“ Sl in the same cell on Radar imagery.
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‘Strongest’ Layover ‘Stronger’ Layover Layover Foreshortening

Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th
ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015.
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https://www.geog.psu.edu/sites/www.geog.psu.edu/files/event/coffee-hour-dr-david-maune-dewberry-engineers-inc/dem3chapter07.pdf

Basic measurement

The basic measurement made by a SAR is S (amplitude and phase). This is the complex

image.

Phasg difference
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A is the amplitude image.
Main types of images: | = A? is the intensity image.
(the phase of a single image is not exploitable)



Backscatter

* Backscatter is the portion of the outgoing radar signal that the
target redirects directly back towards the radar antenna.
Backscattering is the process by which backscatter is formed.

* The scattering cross section in the direction toward the radar is
called the backscattering cross section.
Sigma nought or Gama nought

EMR Back
H Scatter i
* How strong the radar signals Source C‘a'._,,__xe”r:g& icaﬁermg
reflected back are. n\ ‘ ‘9
chtt'i'éri ../

] #_,Scattering

Source: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/definitions



Radar Backscatter

* The radar echo contains information about the Earth’s surface,
which drives the reflection of the radar signal

* This reflection is driven by:

— The frequency or wavelength: radar parameter

— Polarization: radar parameter

— Incidence angle: radar parameter

— Dielectric constant: surface parameter

— Surface roughness relative to the wavelength: surface parameter

— Structure and orientation of objects on the surface: surface

parameter

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Backscattering Mechanisms

Density | Size in relation to the
) | wavelength

Dielectric Constant Size and Orientation

N
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Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Surface Parameters: Dielectric
Constant

Dielectric Properties of Materials
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Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Dielectric Properties of the Surface and its Frozen or
Thawed State

* During the land
surface
freeze/thaw
transition there
is a change in
dielectric
properties of
the surface

* This causesa
notable
increase in
backscatter

17 February 1998
: » Sy o,
FOR ™

2 April 1998

<
F .

15 May 1998

24 Septemr 1998 |

28 June 1998

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



What can SAR data tell you?

* SAR sensors record the interference (Doppler) pattern from
echo signals (energy transmitted form the land back to the
sensor) over several hundred to several thousand meters along
the flight path.

* The received echoes form the raw data matrix or complex
image containing amplitude and phase.

 SAR data are also known as 'complex data,' since it comes in
multiple parts: the amplitude of the signal (intensity) and the
signal time delay (phase). The intensity and phase parts each
tell you something different about the ground.

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Surface roughness

» Surface roughness has a large impact on backscatter intensity.
The four main types of radar backscatter are specular, diffuse,
volume scattering, and double bounce. Each of these
backscatter types corresponds to different levels of surface
roughness and the resulting intensity value.

Specular

Specular Backscatter

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Surface roughness

Diffuse

Volume scattering

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Surface roughness

Double bounce

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Water content

W = Wet Field

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a




Observation: Polarizations

It is best to get into a habit of exploring the available polarizations when working with SAR data.

However, there are a few general guidelines:
VH and HV (cross-polarized) data is more sensitive to vegetation.
When doing interferometry, you must use co-polarized (VV or HH) data.

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Radar Signal Interaction

* The radar signalis primarily sensitive to surface structure
* The scale of surface relative to the wavelength determine
how rough or smooth they appear and how bright or dark

they will appear on the image

Backscattering Mechanisms

< Smooth Surface

N
N\M_/\ Rough Surface

Backscattering Mechanisms
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Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Surface Roughness

AR
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Figure 9. Surface Roughness Scattering (Credit: NASA)

Very Rough: very diffuse



SAR signal penetration by sensor wavelength A
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https://hyp3-docs.asf.alaska.edu/guides/introduction_to_sar/

Radar Backscatter in Forests

Dominant backscattering sources in forests: (1) crown volume scafttering, (2)
direct scattering from tree trunks. (3) direct scattering from the soil surface, (4a) trunk -

ground scattering, (4b) ground - trunk scattering, (5a) crown - ground scattering, (5b) ground -
crown scattering.



Scatterers
contribution

Leaves, Needles

Primary Branches

Secondary
branches
\ 1) Direct Crown scattering 4) Multiple trunk-ground
Higher order  «——{ " 2) pirect trunk-ground 5) Attenuated ground
branches . '
3) Trunk scattering 6) Direct ground scattering
Trunk

14/02/2024



, Scattering mechanisms
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Source: Thuy Le Toan, Introduction to SAR: ESA Advanced course in land remote sensing (2010)




What are the scatterers in the volume scattering?

Austrian pine

X band
A=3 cm

L band
A=27 cm

P band
A=70 cm

The main scatterers in a canopy are the elements having
dimension of the order of the wavelength

VHF
A>3m

Source: Thuy Le Toan, Introduction to SAR: ESA Advanced course in land remote sensing (2010)



Rough Surface

alz.

Schematic sketch of the three main scattering types considered for SAR data.

RELATIVE SCATTERING STRENGTH BY POLARIZATION:

Rough Surface Scattering |5, |>[S,, [>/S,, | or [S

w|
Double Bounce Scattering  |S_ [>[S, [>|S, |or|S, |

Volume Scattering Main source of |S,,, | and |S

ol

Relative scattering strength by polarization
NASA ARSET: Basics of Synthetic Aperture Radar (SAR), Session 1/4 — YouTube (min 33:49 -38:23)



https://www.youtube.com/watch?v=Xemo2ZpduHA
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http://www.youtube.com/watch?v=em41MxplcDc

Source: https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/



https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/

Polarization refers to the direction of travel of an electromagnetic wave vector’s tip: vertical (up and
down), horizontal (left to right), or circular (rotating in a constant plane left or right). The direction of
polarization is defined by the orientation of the wave’s electric field, which is always 90°, or

PO | ar I Zatl O n perpendicular, to its magnetic field.

Propagation direction of electric field

(i) Locus of an elliptically polarized wave

y y
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(a) Horzomal polanzation, (b) Linear 45 degree polanzation, (¢) Left circular polanization,
Vertical polanzation Linear -45 degree polanzation, Right circular polanization

(ii) Typical polarizations
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(i1i) Scattering with respect to polarization

Source: https://www.eorc.jaxa.jp/ALOS/en/img_up/pal_polarization.htm



3-Polarization color overlay

HH polarization (red)
Transmits horizontal waves
Receives horizontal waves

HV polarization (green)
Transmits horizontal waves
Receives vertical waves

VV polarization (blue)
Transmits vertical waves
Receives vertical waves

Source: https: ipl.nasa.gov/mission/get-to-know-sar



https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/

Polarization

2006/08/19 01:17(UT) ALOS/PALSAR POLARIMETRY

Source: https://www.eorc.jaxa.jp/ALOS/en/img_up/pal_polarization.htm



SAR Applied to Forest Studies

( GLOBAL CLIMATE CHANGE
NA\\SJA Vital Signs of the Planet Images of Change

| "‘ it

Before

BEFORE AND AFTER

Deforestation in Argentina's Gran Chaco a

https://climate.nasa.qgov/images-of-chan

O
mm
EE

A A

CURTAIN TOGGLE 2-UP

e?id=727#727-deforestation-in-argentinas-gran-chaco

After


https://climate.nasa.gov/images-of-change?id=727#727-deforestation-in-argentinas-gran-chaco

Droughts

GLOBAL CLIMATE CHANGE
Vital Signs of the Planet Images of Change

BEFORE AND AFTER

2-UP

Drought in Lake Powell, Arizona and Utah ‘a CURTAN TOGGLE

https://climate.nasa.qgov/images-of-change?id=526#526-drought-in-lake-powell-arizona-and-utah



https://climate.nasa.gov/images-of-change?id=526#526-drought-in-lake-powell-arizona-and-utah

Floods

( GLOBAL CLIMATE CHANGE
o Vital Signs of the Planet Images of Change

Before

BEFORE AND AFTER

Flooding in Kerala, India ‘» CURTAIN

TOGGLE

https://climate.nasa.gov/images-of-change?id=659#659-flooding-in-kerala-india
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https://climate.nasa.gov/images-of-change?id=659#659-flooding-in-kerala-india

Example of SAR applications

(a) (b) (©)
B Urban Change (UC) B Natural Unchanged (NU) B Urban Unchanged (UU)

Deep Learning and SAR Applications | by Scott Soenen | Towards Data Science

41


https://towardsdatascience.com/deep-learning-and-sar-applications-81ba1a319def

The global forest above-ground biomass pool for 2010 estimated from high-
resolution satellite observations

» The terrestrial forest carbon pool is poorly quantified, in particular
in regions with low forest inventory capacity.

L. . . . R ALOS PALSAR HV Envisat ASAR
+ By combining multiple satellite observations of synthetic aperture SAR backscatter SAR bachscatter

radar (SAR) backscatter around the year 2010, we generated a
global, spatially explicit dataset of above-ground live biomass BIOMASAR-C
(AGB; dry mass) stored in forests with a spatial resolution of 1 ha. '

Londsot-5 and-7
reflectances

-« Using an extensive database of 110 897 AGB measurements [ omsmi | o somsme
from field inventory plots, we show that the spatial patterns and —— -
magnitude of AGB are well captured in our map with the L‘il p——
exception of regional uncertainties in high-carbon-stock forests Mergn o G5V esimotes I\IMP‘F’LJ
with AGB > 250 Mg ha-1, where the retrieval was effectively

G5V @ 100 m Conversion of G5V to AGB |

based on a single radar observation. ;
AGHE @ 100m

* Uncertainty of estimated AGB was about 50-60% of the mean
AGB reference

Figure 1. Flowchart of the AGB retrieval approach.

GSV- growing stock volume

Santoro, et al. 2021, Earth System Science Data https://doi.org/10.5194/essd-13-3927-2021



https://doi.org/10.5194/essd-13-3927-2021
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Figure 2. Map estimates of AGB (a) and AGB standard deviation expressed relative to the AGB (b). The colour bar of the AGB map has
been truncated at 500 Mgha ! to increase contrast. Similarly, the colour bar of the AGB relative standard deviation has been truncated at
100 %. The right-hand panel shows the profile of average AGB along latitude (thick solid line) and the two-sided average standard deviation
of AGB at a given latitude (horizontal bars).

Santoro, et al. 2021, Earth System Science Data https://doi.org/10.5194/essd-13-3927-2021
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Figure 5. Histograms of AGB from the field inventory database (a) and the map (b) for 0.1° grid cell values. (¢) Scatterplot of map AGB
against field inventory values for 0.1% grid cells (grey circles): the filled circles show the median AGB of the map values in each 10 Mgha ™!
wide interval of field inventory AGB values. The colour bar represents the number of grid cells within a given AGB interval. Similar
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to the FAQ global ecological zones. On each scatterplot, we report the root mean square difference (RMSD) between map and field inventory
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Santoro, et al. 2021, Earth System Science Data https://doi.org/10.5194/essd-13-3927-2021
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Aboveground biomass and multisensory approach
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Woody aboveground biomass mapping of the
Brazilian savanna (Cerrado) with a multi-
sensor and machine learning approach

The Brazilian Savanna, known as Cerrado (Cerrado
sensu lato (s.l.)), is the second largest biome in
South America.

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685 X g 8 Rt 3 . Dt iatilonk Pkl d

Wildilte: Maned Wolf Photo: Thanks to Dr. Charlas AJMuan i


https://doi.org/10.3390/rs12172685

The Cerrado Biome comprises different physiognomies due to variations of soil, topography and human impacts.

The gradients of tree density, tree height, above ground biomass (AGB) and wood species cover vary according to the Cerrado

formation, ranging from different grassland formations (Campo limpo), savannah intermediary formations (Campo sujo, Campo
cerrado, and Cerrado sensu stricto - s.s) and forest formations (Cerraddo).

cerrado "sensu lato"

pr

campo limpo © campo sujo | campo cerrado | cerrado
: i | sensu stricto |

=

height {m}

A

grassland formation savannig/ formation forest formation

cerrado physiognomic gradfent (secording to Coutinho (1978), moditied).

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685
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530000.00 540000.00

Rio Vermelho watershed

Reference data

8260000.00

* Field data consisted of 15 plots
(20mx50m) under the LiDAR
footprint.

* AGB was estimated using Scolforo
et al. (2008) allometries

* Vegetation structure parameters
such as the canopy height model
(CHM), canopy density (CD), and
canopy cover (CC), were derived
from the LiDAR footprint.

* The selected model (RZ=0.93,
RMSE = 13%) was used to predict
AGB across the whole LiDAR flight
footprint.

8250000.00

8240000.00

Clementino area (CT)
10 plots (20mX50m)
dystrophic cerraddo sampled in the municipality of
Itapirapua

Backdrop main: Bing Aerial
Backdrop overview: OpenStreetMap

AGB ~-61.92 +
4.88*CHM + 0.83*CC
Produced by: University of Leicester
Date: 06.11.2019

Projection: WGS84 / UTM22S
Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685
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Variable importance analysis

All datasets ALOS backscatter

ALOS backscatter
ALOS indices

ALOS indices

Predictors

Excluded predictors

L8 reflectances
L8 reflectances

L8 indices L8 indices

0 01 02 03 04 05 06 07 08 09 0 -0.02 -0.04 -0.06 -0.08
R? Decrease in R?

Averaged variable importance analysis across the k-fold procedure for each set of variables derived from Landsat 8 (L8) and ALOS-2/PALSAR-2
(ALOS) included in the RF model. The R? for each single set of variables and all variables together (left), and decrease in R2 for models excluding a
single set of variables (right). ALOS backscatter: ygv, ¥y ALOS indices: RFDI, CpR. L8 reflectances: blue, green, red, near infrared, shortwave
infrared-1, shortwave infrared-2. L8 indices: NDVI, NBR, NBR2, NDMI, and SAVI.

51



Cross-validation
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R2=0.89 el
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Cross-validation between the AGB map predictions and AGB reference data derived from the LiDAR point clouds. The black dash line corresponds to the

y =xline.

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685
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AGB maps over part of the Rio Vermelho watershed, Goias State, Brazil, produced by this study (30 m) (A) and by Santoro et al.
2018 (100 m) (B); Baccini et al. 2012 (500m ) (C); Avitable et al. 2016 (1 km) (D); and Saatchi et al. 2011(1 km) (E).
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Penetration through thick smoke can provide
more accurate and timely information about the extent of
a forest fire and can help quantify vegetation loss.

Sentinel-1 based wildfire progression maps in the Elephent Hill (CNN_mrg in transparent red) overlaid on the Sentinel-2
MSI false color composites (R =SWIR2, G =SWIR1, B=SWIR2). (a) SAR-July 8 on MSI-July 10. (b) SAR-July 20 on MSI-
July 30. (c) SAR-Aug. 1 on MSI-Aug. 4. (d) SAR-Aug. 8 on MSI-Aug. 11. () SAR-Aug. 21 on MSI-Aug. 22. (f) SAR-Sept.
18 on MSI-Oct. 3. The images were generated using Google Earth Engine platform (Map data: Google, ESA).

Ban, Y., Zhang, P., Nascetti, A., Bevington, A.R. and Wulder, M.A., 2020. Near real-time wildfire progression monitoring
with Sentinel-1 SAR time series and deep learning. Scientific Reports, 10(1), pp.1-15.



Wetlands: Penetration through wetland areas can reveal
flooded vegetation where land is covered by shallow
water.
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https://asf.alaska.edu/data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product-downloads/

Penetration through wetland areas can reveal
flooded vegetation where land is covered by shallow
water.

(1) volume scattering
@) specular reflection
(@) double bounce

1: C and L-band SAR interactions in tropical wetlands | Download Scientific Diagram (researchgate.net)

Evans, T.L., 2013. Habitat mapping of the Brazilian Pantanal using synthetic aperture radar imagery
and object based image analysis. University of Victoria (Canada).


https://www.researchgate.net/figure/C-and-L-band-SAR-interactions-in-tropical-wetlands_fig1_277589376
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Fig. 1. (a) Location of the TNF in the Brazilian territory. (b) Zoom on the TNF, enclosed by the dashed line (TNF limits from 2013). The two small rectangles delimit
the area covered by the LIDAR acquisition. (¢) Zoom on the LiDAR coverage. The whole area inside and outside of the two LiDAR rectangles is covered by each
TanDEM-X acquisition used in this study (2012, 2013 and 2016). Background image: Landsat 8 (14/08/2015).

[———11 == [—73 f——1 [———3
A B c D E

Fig. 2. Schematic representation of a tropical forest with different successional stages: A (non-forest); B (secondary forest in initial stage - SFIni); C (secondary forest
in intermediated stage - SFInt); D (secondary forest in advanced stage - SFAdv): E (old growth forest or primary forest - OF).

Bispo, P.C. et al., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived
from TanDEM-X SAR interferometry, Remote Sensing of Environment https://doi.org/10.1016/j.rse.2019.05.013
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Fig. 6. Interferometric heights derived from TanDEM-X (top panel) and H100 (bottom panel) derived from LIDAR CHM, for 2012, 2013 and 2016. For each year and
sensor, the two rectangles correspond to the LIDAR coverage.

Bispo, P.C. et al., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived
from TanDEM-X SAR interferometry, Remote Sensing of Environment https://doi.org/10.1016/j.rse.2019.05.013
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Confusion matrix and cross-validation of TanDEM-X and H100 for 2002
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Fig. 9. Supervised classification of in-
terferometric heights from TanDEM-X
HH (05/12/2012) and LiDAR H100 (31/
07/2012). The selected classes were old
growth forest (OF), secondary forest in
advanced stage (SFAdv), secondary
forest in intermediary stage (SFint),
secondary forest in initial stage (SFIni)
and non-forest (NF). The two rectangles
correspond to the LIDAR coverage.

Bispo, P.C. et al., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived
from TanDEM-X SAR interferometry, Remote Sensing of Environment https://doi.org/10.1016/j.rse.2019.05.013
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Radar vision in the mapping of forest biodiversity
from space | Nature Communications
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Radar vision in the mapping of forest biodiversity
from space

Soyeon Bae® ', Shaun R. Levick® 23, Lea Heidrich!, Paul Magdon 4, Benjamin F. Leutner® 5,

Stephan Wollauer( 8, Alla Serebryanyk’, Thomas Nauss@ ©, Peter Krzystek’, Martin M. Gossner® &,

Peter Schall®, Christoph Heibl@® '©, Claus Bassler'®1", Inken Doerfler"'2, Ernst-Detlef Schulze'3,
Franz-Sebastian Krah® ', Heike Culmsee® ', Kirsten Jung® 16 Marco Heurich'®", Markus Fischer'®?,
Sebastian Seibold® ", Simon Thorn® !, Tobias GerlachZ®, Torsten Hothorn?!, Wolfgang W. Weisser @ ng
Jorg Miiller@ 110

Recent progress in remote sensing provides much-needed, large-scale spatio-temporal
information on habitat structures important for biodiversity conservation. Here we examine
the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the bio-
diversity of twelve taxa across five temperate forest regions in central Europe. We show that
the sensitivity of radar to habitat structure is similar to that of airborne |aser scanning (ALS),
the current gold standard in the measurement of forest structure. Our models of different
facets of biodiversity reveal that radar performs as well as ALS; median R? over twelve taxa by
ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling
axes representing assemblage composition. We further demonstrate the promising predictive
ability of radar-derived data with external validation based on the species composition of
birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote
sensing will require the coupling of radar data to stratified and standardized collected local

species data. 6 1
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Near Real-Time Wildfire Progression Monitoring
with Sentinel-1 SAR Time Series and Deep Learning | Scientific
Reports (nature.com)
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Near Real-Time Wildfire
Progression Monitoring with
Sentinel-1 SAR Time Series and
Deep Learning

Yifang Ban(®%**, Puzhao Zhang™"", Andrea Nascetti', Alexandre R. Bevington(? &
Michael A. Wulder(®?

In recent years, the world witnessed many devastating wildfires that resulted in destructive human
and environmental impacts across the globe. Emergency response and rapid response for mitigation
calls for effective approaches for near real-time wildfire monitoring. Capable of penetrating clouds and
smaoke, and imaging day and night, Synthetic Aperture Radar (SAR) can play a eritical role in wildfire
monitoring. In this communication, we investigated and demaonstrated the potential of Sentinel-1
SAR time series with a deep learning framework for near real-time wildfire progression monitering.
The deep learning framework, based on a Convolutional Neural Network (CNN), is developed to detect
burnt areas autematically using every new SAR image acquired during the wildfires and by exploiting
all available pre-fire SAR time series to characterize the temporal backscatter variations. The results
show that Sentinel-1 SAR backscatter can detect wildfires and capture their temporal progression as
demonstrated for three large and impactful wildfires: the 2017 Elephant Hill Fire in British Columbia,
Canada, the 2018 Camp Fire in Califernia, USA, and the 2019 Chuckegg Creek Fire in northern Alberta,
Canada. Compared to the traditional leg-ratic operator, CNN-based deep learning framewaork can
better distinguish burnt areas with higher accuracy. These findings demonstrate that spaceborme SAR
time series with deep learning can play a significant role for near real-time wildfire monitoring when
the data becomes available at daily and hourly intervals with the launches of RADARSAT Constellation
Missions in 2019, and SAR CubeSat constellations.
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