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Intended learning outcomes

• Geometric proprieties including SAR image interpretation and 
slant-range distortions

• What SAR Backscattering is
• Types of backscattering mechanisms
• SAR backscatter in forests and applications



Geometric proprieties: SAR image interpretation and slant-range 
distortions

While  the  images  created  by  SAR  can  be  rendered  into  a 
recognizable terrain map, there are important differences between 
optical imagery and SAR imagery. SAR imagery is considered a non- 
literal imagery type because it does not look like an optical image 
which  is  generally  intuitive  to  humans.  These  aspects  must  be 
understood for accurate image interpretation to be performed.



Slant Range Distortions

Source: Erika Podest, Basics of SAR: ARSET Applied Remote Sensing Training



Geometric Distortion

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Foreshortening

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Shadow

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Radiometric Distortion

Source: Erika Podest, Basics of SAR: ARSET Applied Remote Sensing Training



Shadowing
Shadowing is caused for the same reasons that shadows are formed in optical imagery: an 
object blocks the path of direct radiation — visible light in the case of optical imaging and 
the radar beam in the case of SAR. However, unlike optical imagery in which objects in 
shadows can be seen due to atmospheric scattering, there is no information in a SAR 
shadow because there is no return signal
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Foreshortening
Because SAR is a side-looking, ranging instrument, the backscattered returns will be 
arranged in the image based on how far the target is from the antenna along the slant 
plane (radar-image plane). This causes some interesting geometrical distortions in the 
imagery, such as foreshortening.

• ‘shortening’ of slopes 
facing the radar

•  ‘stretching’ of slopes 
oppositely oriented 
to the radar
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Layover
Layover is an extreme example of foreshortening where the object is so tall that the radar 
signal reaches point B before it reaches point A. This causes the returns from point B to be 
placed on the image closer to the sensor (near range) and obscure point A, as if the top 
has been overlaid on the foot of the mountain.



SAR distortions

Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th 
ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015.

Chapter 6 (psu.edu)

https://www.geog.psu.edu/sites/www.geog.psu.edu/files/event/coffee-hour-dr-david-maune-dewberry-engineers-inc/dem3chapter07.pdf


The basic measurement made by a SAR is S (amplitude and phase). This is the complex 
image.

Basic measurement

Main types of images:



Backscatter

Source: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/definitions

• Backscatter is the portion of the outgoing radar signal that the 
target redirects directly back towards the radar antenna. 
Backscattering is the process by which backscatter is formed.

• The scattering cross section in the direction toward the radar is
called the backscattering cross section. 
Sigma nought or Gama nought

• How strong the radar signals 
reflected back are.



Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training

Radar Backscatter

• The radar echo contains information about the Earth’s surface, 
which drives the reflection of the radar signal

• This reflection is driven by:
– The frequency or wavelength: radar parameter
– Polarization: radar parameter
– Incidence angle: radar parameter
– Dielectric constant: surface parameter
– Surface roughness relative to the wavelength: surface parameter
– Structure and orientation of objects on the surface: surface 
parameter



Backscattering Mechanisms

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Surface Parameters: Dielectric 

Constant

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Dielectric Properties of the Surface and its Frozen or

Thawed State

• During the land 
surface 
freeze/thaw 
transition there 
is a change in 
dielectric 
properties of 
the surface

•  This causes a 
notable 
increase in 
backscatter

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a

What can SAR data tell you?

• SAR sensors record the interference (Doppler) pattern from 
echo signals (energy transmitted form the land back to the 
sensor) over several hundred to several thousand meters along 
the flight path.

• The received echoes form the raw data matrix or complex
image containing amplitude and phase.

•  SAR data are also known as 'complex data,' since it comes in 
multiple parts: the amplitude of the signal (intensity) and the 
signal time delay (phase). The intensity and phase parts each 
tell you something different about the ground.



Surface roughness

• Surface roughness has a large impact on backscatter intensity. 
The four main types of radar backscatter are specular, diffuse, 
volume scattering, and double bounce. Each of these 
backscatter types corresponds to different levels of surface 
roughness and the resulting intensity value.

Specular

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Surface roughness

Diffuse Volume scattering

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Surface roughness

Double bounce

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Water content

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Observation: Polarizations

• It is best to get into a habit of exploring the available polarizations when working with SAR data.
However, there are a few general guidelines:

• VH and HV (cross-polarized) data is more sensitive to vegetation.
• When doing interferometry, you must use co-polarized (VV or HH) data.

Source: https://storymaps.arcgis.com/stories/fd77b1daf91a4ef99d6f176183e4154a



Radar Signal Interaction

• The radar signal is primarily sensitive to surface structure
• The scale of surface relative to the wavelength determine 

how rough or smooth they appear and how bright or dark 
they will appear on the image

Source: Erika Podest, Basics of SAR: NASA-ARSET Applied Remote Sensing Training



Surface Roughness



SAR signal penetration by sensor wavelength λ

Source: Introduction to SAR - HyP3 (alaska.edu)

https://hyp3-docs.asf.alaska.edu/guides/introduction_to_sar/


Radar Backscatter in Forests
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Scattering mechanisms

Source: Thuy Le Toan, Introduction to SAR: ESA Advanced course in land remote sensing (2010)



Source: Thuy Le Toan, Introduction to SAR: ESA Advanced course in land remote sensing (2010)



NASA ARSET: Basics of Synthetic Aperture Radar (SAR), Session 1/4 – YouTube (min 33:49 -38:23)

https://www.youtube.com/watch?v=Xemo2ZpduHA


SAR signal penetration by sensor wavelength λ

Source: https://www.youtube.com/watch?v=em41MxplcDc

http://www.youtube.com/watch?v=em41MxplcDc


Basics of Polarimetry

Source: https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/

https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/


Polarization

Source: https://www.eorc.jaxa.jp/ALOS/en/img_up/pal_polarization.htm

Polarization refers to the direction of travel of an electromagnetic wave vector’s tip: vertical (up and 

down), horizontal (left to right), or circular (rotating in a constant plane left or right). The direction of 

polarization is defined by the orientation of the wave’s electric field, which is always 90°, or 

perpendicular, to its magnetic field.



Source: https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/

https://nisar.jpl.nasa.gov/mission/get-to-know-sar/polarimetry/


Polarization

Source: https://www.eorc.jaxa.jp/ALOS/en/img_up/pal_polarization.htm



SAR Applied to Forest  Studies

38

https://climate.nasa.gov/images-of-change?id=727#727-deforestation-in-argentinas-gran-chaco

https://climate.nasa.gov/images-of-change?id=727#727-deforestation-in-argentinas-gran-chaco


Droughts
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https://climate.nasa.gov/images-of-change?id=526#526-drought-in-lake-powell-arizona-and-utah

https://climate.nasa.gov/images-of-change?id=526#526-drought-in-lake-powell-arizona-and-utah


Floods
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https://climate.nasa.gov/images-of-change?id=659#659-flooding-in-kerala-india

https://climate.nasa.gov/images-of-change?id=659#659-flooding-in-kerala-india


Example of SAR applications 
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Deep Learning and SAR Applications | by Scott Soenen | Towards Data Science

https://towardsdatascience.com/deep-learning-and-sar-applications-81ba1a319def


One of the main question in Earth Sciences 

The global forest above-ground biomass pool for 2010 estimated from high-

resolution satellite observations

Santoro, et al. 2021, Earth System Science Data  https://doi.org/10.5194/essd-13-3927-2021

• The terrestrial forest carbon pool is poorly quantified, in particular

in regions with low forest inventory capacity.

• By combining multiple satellite observations of synthetic aperture

radar (SAR) backscatter around the year 2010, we generated a

global, spatially explicit dataset of above-ground live biomass

(AGB; dry mass) stored in forests with a spatial resolution of 1 ha.

• Using an extensive database of 110 897 AGB measurements

from field inventory plots, we show that the spatial patterns and

magnitude of AGB are well captured in our map with the

exception of regional uncertainties in high-carbon-stock forests

with AGB > 250 Mg ha−1, where the retrieval was effectively

based on a single radar observation.

• Uncertainty of estimated AGB was about 50-60% of the mean

AGB reference

GSV- growing stock volume

https://doi.org/10.5194/essd-13-3927-2021


Santoro, et al. 2021, Earth System Science Data  https://doi.org/10.5194/essd-13-3927-2021

https://doi.org/10.5194/essd-13-3927-2021


Santoro, et al. 2021, Earth System Science Data  https://doi.org/10.5194/essd-13-3927-2021

https://doi.org/10.5194/essd-13-3927-2021


AGB Colombian 

Amazon

Terabytes of data for National coverage!

Aboveground biomass and multisensory approach



One of the main question in Earth Sciences 

Woody aboveground biomass mapping of the 

Brazilian savanna (Cerrado) with a multi-

sensor and machine learning approach

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

The Brazilian Savanna, known as Cerrado (Cerrado

sensu lato (s.l.)), is the second largest biome in

South America.

https://doi.org/10.3390/rs12172685


One of the main question in Earth Sciences 

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

• The Cerrado Biome comprises different physiognomies due to variations of soil, topography and human impacts.

• The gradients of tree density, tree height, above ground biomass (AGB) and wood species cover vary according to the Cerrado

formation, ranging from different grassland formations (Campo limpo), savannah intermediary formations (Campo sujo, Campo

cerrado, and Cerrado sensu stricto - s.s) and forest formations (Cerradão).

https://doi.org/10.3390/rs12172685
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Study 
site

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

https://doi.org/10.3390/rs12172685


Reference data

Clementino area (CT)
10 plots (20mX50m)

dystrophic cerradão sampled in the municipality of 
Itapirapuã

Chuca area (CA)
5 plots (20mX50m)

Cerradão transition forest dry forest / seasonal 
forest sampled in the municipality of Goiás

• Field data consisted of 15 plots 
(20mx50m) under the LiDAR 
footprint. 

• AGB was estimated using Scolforo
et al. (2008) allometries

• Vegetation structure parameters 
such as the canopy height model 
(CHM), canopy density (CD), and 
canopy cover (CC), were derived 
from the LiDAR footprint. 

• The selected model (R2 = 0.93, 
RMSE = 13%) was used to predict 
AGB across the whole LiDAR flight 
footprint. 

AGB ~ -61.92 + 
4.88*CHM + 0.83*CC

LiDAR data obtained rom the Sustainable Landscapes Project 

by the Brazilian Enterprise for Agricultural Research -

EMBRAPA 
Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

https://doi.org/10.3390/rs12172685
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𝜀𝐴𝐺𝐵 = (𝜀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 + 𝜀𝑎𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑦

2 + 𝜀𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
2 + 𝜀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

2 ) ൗ1 2



Variable importance analysis
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Averaged variable importance analysis across the k-fold procedure for each set of variables derived from Landsat 8 (L8) and ALOS-2/PALSAR-2 
(ALOS) included in the RF model. The R2 for each single set of variables and all variables together (left), and decrease in R2 for models excluding a 
single set of variables (right). ALOS backscatter: 𝛾𝐻𝑉

0 , 𝛾𝐻𝐻
0 . ALOS indices: RFDI, CpR. L8 reflectances: blue, green, red, near infrared, shortwave 

infrared-1, shortwave infrared-2. L8 indices: NDVI, NBR, NBR2, NDMI, and SAVI.



Cross-validation 
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Cross-validation between the AGB map predictions and AGB reference data derived from the LiDAR point clouds. The black dash line corresponds to the 
y = x line.

Bispo, et al. 2020, Remote Sensing https://doi.org/10.3390/rs12172685

https://doi.org/10.3390/rs12172685


AGB Uncertainty 
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AGB maps over part of the Rio Vermelho watershed, Goiás State, Brazil, produced by this study (30 m) (A) and by Santoro et al. 

2018 (100 m) (B); Baccini et al. 2012 (500m ) (C); Avitable et al. 2016 (1 km) (D); and Saatchi et al. 2011(1 km) (E).



Wildfires: Penetration through thick smoke can provide 

more accurate and timely information about the extent of 

a forest fire and can help quantify vegetation loss.

Ban, Y., Zhang, P., Nascetti, A., Bevington, A.R. and Wulder, M.A., 2020. Near real-time wildfire progression monitoring 

with Sentinel-1 SAR time series and deep learning. Scientific Reports, 10(1), pp.1-15.

Sentinel-1 based wildfire progression maps in the Elephent Hill (CNN_mrg in transparent red) overlaid on the Sentinel-2 

MSI false color composites (R = SWIR2, G = SWIR1, B = SWIR2). (a) SAR-July 8 on MSI-July 10. (b) SAR-July 20 on MSI-

July 30. (c) SAR-Aug. 1 on MSI-Aug. 4. (d) SAR-Aug. 8 on MSI-Aug. 11. (e) SAR-Aug. 21 on MSI-Aug. 22. (f) SAR-Sept. 

18 on MSI-Oct. 3. The images were generated using Google Earth Engine platform (Map data: Google, ESA).



Wetlands: Penetration through wetland areas can reveal 

flooded vegetation where land is covered by shallow 

water.

Wetlands MEaSUREs – Product Downloads – ASF (alaska.edu)

https://asf.alaska.edu/data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product-downloads/


1: C and L-band SAR interactions in tropical wetlands | Download Scientific Diagram (researchgate.net)

Evans, T.L., 2013. Habitat mapping of the Brazilian Pantanal using synthetic aperture radar imagery 

and object based image analysis. University of Victoria (Canada).

Wetlands: Penetration through wetland areas can reveal 

flooded vegetation where land is covered by shallow 

water.

https://www.researchgate.net/figure/C-and-L-band-SAR-interactions-in-tropical-wetlands_fig1_277589376


Bispo, P.C. et al., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived 

from TanDEM-X SAR interferometry, Remote Sensing of Environment https://doi.org/10.1016/j.rse.2019.05.013

https://doi.org/10.1016/j.rse.2019.05.013


Bispo, P.C. et al., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived 

from TanDEM-X SAR interferometry, Remote Sensing of Environment https://doi.org/10.1016/j.rse.2019.05.013

https://doi.org/10.1016/j.rse.2019.05.013


Bispo, P.C. et al., 2019. Mapping forest successional stages in the Brazilian Amazon using forest heights derived 

from TanDEM-X SAR interferometry, Remote Sensing of Environment https://doi.org/10.1016/j.rse.2019.05.013

https://doi.org/10.1016/j.rse.2019.05.013


Case Studies: Radar vision in the mapping of forest biodiversity 
from space | Nature Communications

61

https://www.nature.com/articles/s41467-019-12737-x
https://www.nature.com/articles/s41467-019-12737-x


Case Studies: Near Real-Time Wildfire Progression Monitoring 
with Sentinel-1 SAR Time Series and Deep Learning | Scientific 
Reports (nature.com)

62

https://www.nature.com/articles/s41598-019-56967-x
https://www.nature.com/articles/s41598-019-56967-x
https://www.nature.com/articles/s41598-019-56967-x


Case Studies: Remote Sensing | Free Full-Text | Change Detection of 
Selective Logging in the Brazilian Amazon Using X-Band SAR Data and 
Pre-Trained Convolutional Neural Networks (mdpi.com)

63

https://www.mdpi.com/2072-4292/13/23/4944
https://www.mdpi.com/2072-4292/13/23/4944
https://www.mdpi.com/2072-4292/13/23/4944


Case Studies: Remote Sensing | Free Full-Text | Discriminating Forest 
Successional Stages, Forest Degradation, and Land Use in Central 
Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data (mdpi.com)

64

https://www.mdpi.com/2072-4292/12/21/3512
https://www.mdpi.com/2072-4292/12/21/3512
https://www.mdpi.com/2072-4292/12/21/3512
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Traunstein Forest – 

F SAR image 

Credit DLR
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